Photochemical Tyrosine Oxidation with a Hydrogen-Bonded Proton Acceptor by Bidirectional Proton-Coupled Electron Transfer.

نویسندگان

  • Arturo A Pizano
  • Jay L Yang
  • Daniel G Nocera
چکیده

Amino acid radical generation and transport are fundamentally important to numerous essential biological processes to which small molecule models lend valuable mechanistic insights. Pyridyl-amino acid-methyl esters are appended to a rhenium(I) tricarbonyl 1,10-phenanthroline core to yield rhenium-amino acid complexes with tyrosine ([Re]-Y-OH) and phenylalanine ([Re]-F). The emission from the [Re] center is more significantly quenched for [Re]-Y-OH upon addition of base. Time-resolved studies establish that excited-state quenching occurs by a combination of static and dynamic mechanisms. The degree of quenching depends on the strength of the base, consistent with a proton-coupled electron transfer (PCET) quenching mechanism. Comparative studies of [Re]-Y-OH and [Re]-F enable a detailed mechanistic analysis of a bidirectional PCET process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciphering the incognito role of water in a light driven proton coupled electron transfer process† †Electronic supplementary information (ESI) available: Materials and methods, IR, NMR, HRMS and necessary supplementing photophysical spectra along with corresponding data are provided in the form of a table. See DOI: 10.1039/c7sc03161k

Light induced multisite electron proton transfer in two different phenol (simple and phenol carrying an intramolecularly hydrogen bonded base) pendants on acridinedione dye (ADD) and an NADH analogue was studied by following fluorescence quenching dynamics in an ultrafast timescale. In a simple phenol derivative (ADDOH), photo-excited acridinedione acquires an electron from phenol intramolecula...

متن کامل

Proton-Coupled Electron Transfer in a Series of Ruthenium-Linked Tyrosines with Internal Bases: Evaluation of a Tunneling Model for Experimental Temperature-Dependent Kinetics.

Photoinitiated proton-coupled electron transfer (PCET) kinetics has been investigated in a series of four modified tyrosines linked to a ruthenium photosensitizer in acetonitrile, with each tyrosine bearing an internal hydrogen bond to a covalently linked pyridine or benzimidazole base. After correcting for differences in driving force, it is found that the intrinsic PCET rate constant still va...

متن کامل

Proton and hydrogen currents in photosynthetic water oxidation.

The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discusse...

متن کامل

Kinetic isotope effect of proton-coupled electron transfer in a hydrogen bonded phenol-pyrrolidino[60]fullerene.

Proton-coupled electron transfer (PCET) plays a central role in photosynthesis and potentially in solar-to-fuel systems. We report a spectroscopy study on a phenol-pyrrolidino[60]fullerene. Quenching of the singlet excited state from 1 ns to 250 ps is assigned to PCET. A H/D exchange study reveals a kinetic isotope effect (KIE) of 3.0, consistent with a concerted PCET mechanism.

متن کامل

Comparative PCET study of a donor-acceptor pair linked by ionized and nonionized asymmetric hydrogen-bonded interfaces.

A Zn(II) amidinium porphyrin is the excited-state electron donor (D) to a naphthalene diimide acceptor (A) appended with either a carboxylate or sulfonate functionality. The two-point hydrogen bond (...[H(+)]...) formed between the amidinium and carboxylate or sulfonate functionalities establishes a proton-coupled electron transfer (PCET) pathway for charge transfer. The two D...[H(+)]...A asse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 3 8  شماره 

صفحات  -

تاریخ انتشار 2012